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The dispersion relation for a random gravity wave field is derived usiilg the 
complete system of nonlinear equations. It is found that the generally accepted 
dispersion relation is only a first-order approximation to the mean value. The 
correction to this approximation is expressed in terms of the energy spectral 
function of the wave field. The non-zero mean deviation is proportional to the 
ratio of the meaii Eulerian velocity a t  the surface and the local phase velocity. 
In  addition to the mean deviation, t,here is a random scatter. The root-mean- 
square value of this scatter is proportional to the ratio of the root-mean-square 
surface velocity and the local phase velocity. As for the phase velocity, the non- 
zero mean deviation is equal to the mean Eulerian velocity while the root-meaii- 
square scatter is equal to the root-mean-square surface velocity. Special cases 
are considered and a comparison with experimental data is also discussed. 

1. Introduction 
In  the study of surface waves, there is a special relationship between the wave- 

number k and the frequency g, known as the dispersion relation. That is, in 
deep water, 

where g is the gravitational acceleration. Although this relation is derived for 
a single wave and based on linear theory only, it has been used as an approxima- 
tion even in random wave fields (see, for example, Phillips 1966). On close exami- 
nation of the higher-order corrections, Stokes (1847) calculated that to the third 
order of approximation 

(T2 = gk, (1) 

g2 = g q i  + a2ii2 + 0(a4k4)), (2) 

or c2 = gk-l(i + a 2 k 2 + ~ ( a 4 k 4 ) ) ,  (3) 

in which a is the wave amplitude and C is the phase velocity. Thus (owing to 
nonlinear effects) the dispersion relation azd phase speed of the waves change. 
In  fact, the experimental studies by Grose, Warsh & Garstang (1972)) Yefiinov & 
Khristoforov (1971) and Yefimov, Solov’yev & Khristoforov (1972) all indicate 
qualitative agreement with Stokes’ result, but the data showed a great deal of 
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FIGURE 1. Higher-order waves generated by nonlinear interactions between two primary 
wave trains. 0, dispersion relation of the primary waves, of frequencies cr,, o2 and wave- 
numbers k,, k,; A, second-generation waves, of frequencies ul +a, and wavenumbers 
k, f k,; n, third-generation waves, of frequencies u1 f Zu, and wavenumbers k, Zk,. 

scatter. The effect of the nonlinear mechanism can be easily demonstrated by the 
following simple discussion. 

Let us take two trains of simple waves propagating in the same direction with 
wavenumbers k, and k,  and frequencies el and (T,, respectively. For each of the 
wave trains, the following simple dispersion relation holds : 

at = gki, where i = 1,2. (4) 

However, owing to nonlinear interaction, waves of wavenumbers k, f k,  and 
frequencies (T,I~:u, will be generated as the first-generation offspring of the 
original waves. It is noted that the dispersion relation of these waves is not 
((T, f c 2 ) 2  = g(k, k k,). The nonlinear mechanism will not stop here. Further inter- 
actions will generate waves of wavenumbers and frequencies k, * 2k,, el ~f: 2e2,  
etc. as discussed by Phillips (1960 a) ,  Longuet-Higgins (1962) and Longuet- 
Higgiiis & Phillips (1962). The dispersion relation of these waves again does not 
satisfy (el 2 ( ~ , ) 2  = g(k ,  & 2k,). The whole process of this interaction is shown 
schematically in figure I .  For a random wave field, the analogous process will 
involve all the components and eventually spread the energy over wavenumber- 
frequency space according to the nonlinear equations of motion. The dispersion 
relation can no longer be represented by a single line but will be modified 
accordingly. 

Owing to the special significance of the dispersion relation in wave studies, 
a detailed understanding of it will have important consequences on such problems 
as random wave interactions and transformation between wavenumber and 
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frequency spectra. In  this paper, a quantitative analysis based on the nonlinear 
kinematic and dynamic equations is performed to derive the most general form 
of the dispersion relation for any given homogeneous random gravity wave field. 
The mechanism of nonlinear wave-wave interactions as studied by Phillips 
(1960a, 1966) is fully incorporated. The procedure is exactly the same as in the 
simple wave case, but random wave representation is used. Special cases are 
subsequently discussed. It is shown that the dispersion relation is random; the 
mean dispersion relation deviates from the linear case and the mean-square 
random scatter is also obtained. It is noted that the mean-square random scatter 
is similar to that obtained by Longuet-Higgins & Phillips (1962) but that the 
latter considered only the case of discrete components under resonant interaction 
conditions. Furthermore, Willebrand (1975), using a variational principle, showed 
that in an inhomogeneous wave field the group velocity or energy transport is 
influenced by nonlinear interactions; in a homogeneous random wave field, 
although nonlinear effects do not contribute to the total energy transport, they 
do modify both the mean value and random scatter of the dispersion relation. 

2. Analysis 
The following analysis is based mainly on the discussion of random waves by 

Phillips (1966, pp. 27-79). The special approach adopted follows that of Huang 
(1971). Under the standard assumption of waves of small slope on an inviscid and 
incompressible fluid, the whole fluid field can be approximated by an irrotational 
motion governed by 

where @(x,  x ,  t )  is the velocity potential, x the horizontal position vector, z the 
vertical position, measured positive upwards, and t the time. For a random wave 
field, the solution of (5) subject to the condition that all motion ceases a t  infinite 
depth is 

V W ( X , Z , t )  = 0, ( 5 )  

@ ( X , Z , t )  = JkJn dA ( k ,  n)  elk12 ei(k. =-nt), (6) 

where dA(k, n) is a complex-valued random function of the wavenumber k and 
frequency n. The integrals are carried over all wavenumber-frequency space. 

For this wave field, the free-surface elevation [(x, t )  can be expressed as 

c(x, t )  = 1 1 dB(k, n) effk-x-nt), 
k n  

(7) 

where dB(k, n) is another complex-valued random function. Furthermore, under 
statistically stationary and homogeneous assumptions, dB(k, n) can be related to 
the directional wave energy spectrum X ( k ,  n) by 

if k + k,, n + n,,] 
(8) X ( k , n )  if k = k,, n = n,, 

dB(k, n) dB*(kl, n,) = 

where dB*(k, n) is the complex conjugate of dB(k, n) and the overbar denotes an 
ensemble average. Thus the sea state is uniquely statistically related to the 
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random function dB(k, a), which in turn determines the spectral function. Since 
the wave field is most commonly represented by the wave spectrum, it is desirable 
to relate other quantities to dB(k,n) and ultimately express all quantities in 
terms of the spectral function. To achieve this a relationship between dA(k, n) 
and dB(k,n) was found by Huang (1971) through the kinematic boundary 
condition 

i!L- at 21 az -(v@)c.vc. (9)  

To the third-order approximation, the result is 

x dB(k-k,, n-n,)dB(k,,n,) 

k .  (k - k,) (k - k,) . (k - k k 
l -  ,)I - 

Ik-k,l Ik-k,-k,l 
xdB(k-k,-k,,n-nl-n,)dB(k,,n,)dB(k,,n,). (10) 

Now by using the dynamic surface boundary condition without surface tension, 

(11) (a@/w, + M 2 ) g  - s5 = 0, 

with q as the velocity, an identity results. This is the same procedure as that 
used in deriving the dispersion relation for a train of simple waves. From ( 6 ) ,  (7) 
and (11) we get 

/k//dB(k,n)e’x = indA(k,n)elklceix 
!k / n  

where x = k.  x - nt is the phase function. Substituting (10) into (12) and re- 
arranging the terms, we obtain a relation of the form 

n n  

P(k, n; k,, n,, k,, n,) dB(k, n) eix 3 0. 
J k j n  

Since dB(k, n) is an arbitrary function, the only possibility for (13) to hold 
identically is 

or 
(14) P(k, n; k,, n,, k,, n2) = 0,  

g - = 1 1 f,(k, n; k,, n,) cZB(k,, n,) eix1 I k l  k, nl 
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where 

n(n + nl) - in2\ kl - f (1 - a) (lkl+ lkll) nn, 
- (k+ k,). k 

Ikl 

Equation (15) gives the most general expression for the dispersion relation up 
to t8he third-order terms. It indicates that in a random ocean the dispersion 
relation is also a function of time and space as expressed in the phase functions. 
Physically, this can be explained by considering the kinematics. When a short 
wave rides on a long wave, the short wave will experience a local Eulerian velocity 
which results in a Doppler frequency shift which is a function of time and space. 
However, (15) is too general to be of practical use without proper statistical 
processing. If we neglect all the nonlinear terms on the right-hand side of (15), we 
immediately recover the linear, first-order approximation 

gk = n2 = r 9 .  

The nonlinear terms, which are generated by the interaction between different 
components in the random wave field, have a non-zero mean from the second and 
third terms on the right-hand side of (15), which denote the mean deviation of the 
dispersion relation from the result of linear theory, while the first term indicates 
random scatter with a zero mean. In  order to calculate the mean deviation, and 
also the root-mean-square scatter, we have to perform the following calculations. 

First, take the mean of (15). The first term on the right-hand side vanishes 
because it represents the random scatter only. The third term vanishes also 
because 

dB(k, - k,, n, - n,) dB(k,, n,) = dB(k, - k,, n, - n,) dB*( - k,, - n2) 

} (16) 
0 if k, =l= 0, n, + 0, = I  X(k,, n2) dk,dn, if k, = n, = 0, 

but when k, = n, = 0 thenf, = 0. The only non-zero term is the second term. 
After simplification, we have 

(17) 
122 

g - - = -s 1 f;(k n; k,, n,) S(k,,  n,) dk, dn,, 
lkl kl 121 

where 

n2 k .  (k- k,) (k- k,). k 
f; = -[$(k+2kl).k- Ikl Ikl Ik-kll n(n + n,) 
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Thus we obtain the most general expression for the mean deviation in terms of the 
directional energy spectrum X ( k ,  n). In  order to simplify the expression further, 
let us assume that all the waves are propagating in the same direction. In this case 

f 6 = 3n2k, + nnl( k -I- k,) 
and (1 7 )  becomes 

n2 
{3n2k1 +nn,(k + k,)} X(k,, n,) dk ,  dn,, 9-T = - 

where X(k,, n,) is the one-dimensional wavenumber-frequency spect'rum. Since 
the spectral function X ( k ,  n) is an even function, we have simply that 

where the integrations are carried over positive values of k, and n, only. 

of (15) we obtain the mean-square vaIue 2 of the random scatter as 
Second, taking the mean of the square of the first term on the right-hand side 

- 
C2 = S,,S,,f:(k, n; k,, n,) X(k,,n,) d k ,  dn,. 

Hence €2 = 2n2J J n:X(k,, n,) dk,dn.,, (23) 

(21) 

Under the assumption of a unidirectional wave field, 

f2,(k, n; k,, n,) = n2 ny. (22) 
- 

kl 111 

where the integrations are again over positive k, and n only. 

3. Phase velocity 
Having derived the general expressions (20)  and (23), we can calculate the 

changes in phase velocity in a random wave field. If we take the first-order 
approximation g / k  = C& where Co is the first-order phase velocity, and by 
definition C = n /k ,  we can write (20) as 

By using I to denote the integrand, (24) can be rewritten as 

2 2 I C  (Z) -c,G- 1 = 0. 

The solution for (I/Co)2 g 1 is 

or 

-=-+((-) c I I 2  +l)  3 N I+- I 
co Go- co CO' 
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A similar result has been derived by Longuet-Higgins & Phillips (1962) by con- 
sidering the interactions of two trains of simple waves propagating in the same 
direction. They found the change of phase velocity to be 

AC, = a2,v,k2, 

where the subscripts indicate the different wave trains. To generalize to a 
continuous spectral function, i t  was noted that 

cr+ &Y 

C & ~ 2 ,  = E ( v ) d v ,  (28) 
5 

in which E(o)  is the wave energy spectrum. They then obtained 

The difference between the two expressions in (27) and (29) is a factor of two. 
Since the quantity represented by .Z is exactly the mean quasi-Eulerian velocity 
as derived by Phillips (1960 b) ,  physically the change in phase velocity is precisely 
a Doppler shift caused by the local velocity field; therefore the presentIresult 
should be expected. 

4. Discussion 
In order to show the effect of the nonlinear interaction on the dispersion 

relation in a random gravity wave field quantitatively, a apecific spectral function 
has to be adopted. Since the dispersion relation depends on the spectral function 
for each specific sea state, an averaged form is not the natural expression to 
employ because spectral functions are different for different cases. However, an 
approximation can be made if the spectrum is written in the universal equilibrium 
form proposed by Phillips (1958) : 

S ( k ,  n) = , 8 g z r 5 6 ( k  - v2/g) 6(n - v), ( 30) 

where p = 1.2 x lo-, and S is the Dirac delta function. Combining (20) and (30), 
we have in the mean 

g - v2/k  = -pgu/vo, (31) 

with vo as the cut-off frequency at the lower end. 

and (30): 
The root-mean-square scatter can also be calculated by combining (23) 

- 
(e"3 = ip:gv/vo. (33) 

The scatter is much larger than the mean deviation since p is a small number. 
Physically, the scatter arises from Eulerian velocity components, which have 
small means but large fluctuations. A diagram showing the mean deviation and 
the root-mean-square scatter together with all the available data published by 
Longuet-Higgins, Cartmight & Smith (1963), Grose et al. (1972) and Yefimov 
et al. (1972) is given in figure 2. The agreement is in general rather poor. The 
general tendency seems to be a decrease in wavenumber in comparison with the 
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FIGURE 2. Comparison of theoretical dispersion relat,ion for an equilibrium-range spectrum 
with some available field data. ___ , mean deviation: - - -, root-mean-square scatter; 
0, Longuet-Higgins el al. (1963); A, Grose et al. (1972); 0, Yefimov et al. (1972). 

corresponding linear waves. This apparent functional difference is especially 
evident in the higher frequency range, where the nonlinear mechanism is more 
important. Several reasons can be advanced to explain the discrepancy. First, the 
spectra in each individual case are not necessarily in the equilibrium range. 
Second, the wave fields are definitely not unidirectional. Third, as indicated by 
t,he low coherence measured by Yefimov et al. (1972), the wave field may contain 
motion other than waves, such as wind drift and turbulence. Finally, measure- 
ments were made in rather imprecise ways. Most of the wavenumber values 
reported were obtained from surface-slope data from wave staffs spaced at  fixed 
distances. Such a set-up tends to underestimate the slope, and hence the value of 
t,he wavenumber, especially in the higher wavenumber range. For lack of better 
data, the diagram should be taken only as a general guide. The wide scatter serves 
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as the best evidence of the absence of a single form of the dispersion relation for 
all wave conditions. 

As the last example, let us consider the case of a single train of waves. The 
spectrum is given by 

Combining (24) and (33), we have 

X ( k ,  n )  = ga2S(k - k,) 6(n - no) 

c2 = a$2, = (g/k,) (1 +a";), 

(33) 

which is precisely the Stokes result. For this case the root-mean-square scatter 
is proportional to ak. This result compares well with the observed scatter value 
measured by Wright & Keller (1970) in their laboratory study. 
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